Search results for "water electrolysis"
showing 10 items of 13 documents
Eulerian two-fluid model of alkaline water electrolysis for hydrogen production
2020
Hydrogen storage is a promising technology for storage of renewable energy resources. Despite its high energy density potential, the development of hydrogen storage has been impeded, mainly due to its significant cost. Although its cost is governed mainly by electrical energy expense, especially for hydrogen produced with alkaline water electrolysis, it is also driven by the value of the cell tension. The most common means of electrolyzer improvement is the use of an electrocatalyst, which reduces the energy required for electrochemical reaction to take place. Another efficient means of electrolyzer improvement is to use the Computational Fluid Dynamics (CFD)-assisted design that allows the…
Hydrogen from The Sea: The Challenge of the Future. Present and Future Developments
2014
In this paper we proposed the use of saline water to product hydrogen. As far as using saline water, can be proposed two different scheme and technology. The aim of this work is to design an electrolyze system capable of utilizing sea water for direct electrolysis. It is probable that these systems would operate at a low power density and electrolyze only a small portion of the water in contact with electrodes. In particular, we present the results obtained by two different prototype of electrolyzer: one with steel electrodes and the second electrodes with titanium. Further experiments were carried out by changing the electrolytic solution of water and sodium chloride in real seawater. Fina…
Experimental Test and Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Appro…
2017
In this paper, we propose a reliability-oriented design of a linear generator-based prototype of a wave energy conversion (WEC), useful for the production of hydrogen in a sheltered water area like Mediterranean Sea. The hydrogen production has been confirmed by a lot of experimental testing and simulations. The system design is aimed to enhance the robustness and reliability and is based on an analysis of the main WEC failures reported in literature. The results of this analysis led to some improvements that are applied to a WEC system prototype for hydrogen production and storage. The proposed WEC system includes the electrical linear generator, the power conversion system, and a sea-wate…
Evolutionary Design Optimization of an Alkaline Water Electrolysis Cell for Hydrogen Production
2020
Hydrogen is an excellent energy source for long-term storage and free of greenhouse gases. However, its high production cost remains an obstacle to its advancement. The two main parameters contributing to the high cost include the cost of electricity and the cost of initial financial investment. It is possible to reduce the latter by the optimization of system design and operation conditions, allowing the reduction of the cell voltage. Because the CAPEX (initial cost divided by total hydrogen production of the electrolyzer) decreases according to current density but the OPEX (operating cost depending on the cell voltage) increases depending on the current density, there exists an optimal cu…
Nanostructured electrodes for hydrogen production in alkaline electrolyzer
2018
Abstract Ever-widespread employment of renewable energy sources, such as wind and sun, request the simultaneous use of effective energy storage systems owing to the intermittent and unpredictable energy generation by these sources. The most reliable storage systems currently under investigation are batteries and electrochemical cells for hydrogen production from water splitting. Both systems store chemical energy which can be converted on demand. The low power density is the weakness of the batteries while the high production cost limits currently the wide use of hydrogen from electrochemical water splitting. In this work, attention was focused on the use of nanostructured Ni as a cathode f…
PEM electrolyzer characterization with carbon-based hardware and material sets
2021
Abstract The research and development of proton exchange membrane water electrolysis (PEMWE) is an upcoming and growing area due to a rising interest in hydrogen as an energy carrier. Operating conditions are harsher than in a fuel cell system, particularly because the potentials required for the oxygen evolution reaction are significantly higher. In commercial water electrolysis systems, this is compensated by typically using titanium material sets that are often protected against oxidation through coating processes. Such material choices make small scale research hardware and porous transport layers expensive and difficult to source. In this work, we show that the stability of traditional…
Performance Enhancement of Alkaline Water Electrolyzer Using Nanostructured Electrodes Synthetized by Template Electrosynthesis
2018
The increase of power generation by renewable sources is causing problems in the management of the electricity grid. In order to favor the transition from the current energy production towards renewable energy sources, it is necessary to plan strategy to develop suitable energy storage systems. Certainly, the electrochemical hydrogen production can be considered as one of the most promising storage technologies. In this work, an innovative alkaline electrolyzer is presented from its design based on the use of nanostructured electrodes up to its implementation suggested by the results of tests simulating real operation. The nanostructured electrodes were fabricated by template electrosynthes…
Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer
2021
Abstract Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried…
Hydrogen Production from Methanol-Water Solution and Pure Water Electrolysis Using Nanocomposite Perfluorinated Sulfocationic Membranes Modified by P…
2022
In this work, we report the preparation of Nafion membranes containing two different nanocomposite MF-4SC membranes, modified with polyaniline (PANI) by the casting method through two different polyaniline infiltration procedures. These membranes were evaluated as a polymer electrolyte membrane for water electrolysis. Operating conditions were optimized in terms of current density, stability, and methanol concentration. A study was made on the effects on the cell performance of various parameters, such as methanol concentration, water, and cell voltage. The energy required for pure water electrolysis was analyzed at different temperatures for the different membranes. Our experiments showed …
Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer
2022
Abstract Over the last decade, as a consequence of the global decarbonization process, the interest towards green hydrogen production has drastically increased. In particular a substantial research effort has focused on the efficient and affordable production of carbon-free hydrogen production processes. In this context, the development of more efficient electrolyzers with low-cost electrode/electrocatalyst materials can play a key role. This work, investigates the fabrication of electrodes of nickel-zinc alloys with nanowires morphology cathode for alkaline electrolyzers. Electrodes are obtained by the simple method of template electrosynthesis that is also inexpensive and easily scalable.…